Homework I Due Date: 10/02/2022

Exercise 1 (1 point). What are the types of the following equations.

- (i) $\partial_x^2 u 4 \partial_{xy} u + 4 \partial_y^2 u = 0.$
- (ii) $9\ddot{\partial}_x^2 u + 6\partial_{xy} u + \partial_y^2 u + \partial_x u = 0.$ (iii) $\partial_x^2 u 4\partial_{xy} u + \partial_y^2 u + 2\partial_y u + 4u = 0.$

Exercise 2 (1 point). Solve the following transport equation.

- (i) $\partial_t u + \frac{3}{2} \partial_x u = 0$ with $u(0, x) = \sin x$ for $x \in \mathbb{R}$.
- (ii) $\partial_t u + \tilde{\partial}_x u + u = 0$ with u(0, x) = g(x) for $x \in \mathbb{R}$. (iii) $\partial_t u + \partial_x u + u = e^{t+2x}$ with u(0, x) = 0 for $x \in \mathbb{R}$.

Exercise 3 (1 point). (i) Consider the transport equation $\partial_t u + 2\partial_x u = 0$ with u(0,x) = g(x). Show that if the initial data $g(x) \to 0$ as $x \to \pm \infty$, then for each fixed $x \in \mathbb{R}$, the solution u satisfies $u(t, x) \to 0$ as $t \to \infty$.

(ii) Consider the transport equation $\partial_t u + 2\partial_x u + u = 0$ with u(0, x) = g(x). Show that if the initial data is bounded, $\max_{x \in \mathbb{R}} |g(x)| \leq M$ for some M > 0, then the solution u satisfies $\lim_{t \to \infty} u(t, x) = 0$ for each $x \in \mathbb{R}$.

Exercise 4 (2 points). (i) Show that the following functions u(x, y) define classical solutions to the 2D Laplace's equation $\partial_x^2 u + \partial_y^2 u = 0$. Be careful to specify an appropriate domain.

(a)
$$e^x \cos y$$
, (b) $1 + x^2 - y^2$, (c) $\log(x^2 + y^2)$, (d) $\frac{x}{x^2 + y^2}$

(ii) Show that the following functions u(x, y) define classical solutions to the 1D linear wave equation $\partial_t^2 u - 4 \partial_x^2 u = 0$ on $(t, x) \in (0, \infty) \times \mathbb{R}$.

(a)
$$4t^2 + x^2$$
, (b) $\cos(x+2t)$, (c) $\sin 2t \cos x$, (d) $e^{-(x-2t)^2}$.

(iii) Find all solutions u(x,y) = f(r) of the 2D Laplace's equation $\partial_x^2 u + \partial_y^2 u = 0$ that depend only on the radial coordinate $r = \sqrt{x^2 + y^2}$.

Exercise 5 (2 points). Let u be a real $C^1(\mathbb{R}^2)$ solution of the equation

 $a(x,y)\partial_x u(x,y) + b(x,y)\partial_y u(x,y) = -u(x,y),$

in the closed unit disc $D \in \mathbb{R}^2$. We assume here that a and b are given C^1 real coefficients, with

$$a(x,y)x + b(x,y)y > 0$$

on the unit circle. Show that $u \equiv 0$.

Hint: One can show that u^2 can not have a positive maximum.

Exercise 6 (3 points). (i) Write down a formula for the general solution to the nonlinear PDE $\partial_t u + \partial_x u + u^2 = 0$ with u(0, x) = g(x) for $x \in \mathbb{R}$. (ii) Show that if the initial data is positive and bounded, $0 < u(0, x) \leq M$ for some M > 0, then the solution exists for all time t > 0 and $u(t, x) \to 0$ as $t \to \infty$ for each fixed $x \in \mathbb{R}$. (iii) On the other hand, if the initial data is negative somewhere, so q(x) < 0 at some $x \in \mathbb{R}$, then the solution blows up in finite time: there exist T > 0 and $y \in \mathbb{R}$ such that $\lim_{t\to\infty^-} u(t,y) = -\infty$. (iv) Try to find a formula for the earliest blow up time $T_* > 0$. The number T_* is called the lifespan of the smooth solution u. Hint: Consider the function z(s) = u(t + s, x + s) for $s \ge -t$. By an elementary

computation, we have $\frac{d}{ds}z + z^2 = 0$.